
A Dialogue Architecture for Multimodal Control of Robots

Carl BURKE
The MITRE Corporation

7515 Colshire Drive
McLean VA 22102 USA

cburke@mitre.org

Lisa HARPER
The MITRE Corporation

7515 Colshire Drive
McLean VA 22102 USA

lisah@mitre.org

Dan LOEHR
The MITRE Corporation

7515 Colshire Drive
McLean VA 22102 USA

loehr@mitre.org

Abstract
Robots typically execute only pre-
programmed, limited instructions. For hu-
mans to command teams of semi-
autonomous robots in non-trivial, mobile,
and dynamically changing tasks, the human-
robot interface will need to include several
aspects of human-human communication.
These aspects include cooperatively detect-
ing and resolving problems, making using of
context, and maintaining contexts across
multiple conversations. In this paper, we
describe the architecture we are developing
to support this dialogue system, based on the
TRINDIKit framework.

Introduction
Robotics research has recently experienced a
surge of interest due to a growing awareness that
robots can work collaboratively with humans to
perform tasks in situations unsafe for humans.
The 1997 Mars Sojourner rover was tasked to
act as a "mobile remote geologist" and con-
ducted soil experiments in several different ter-
rains (NASA 1997). Teleoperated robots as-
sisted at the site of the World Trade Center in
New York City after the September 11 attack.
Robots were able to penetrate into areas of rub-
ble debris in cavities too narrow and dangerous
for humans and dogs (Kahney 2001). Finally,
the US Government’s Defense Advanced Re-
search Projects Agency (DARPA) has invested
substantial funding toward a vision in which
robots will support future combat systems.

Despite this increased activity in robotics, rela-
tively few advances have been made in the area
of human-robot interaction. In a recent Robocup
Rescue event, the best contenders in the compe-
tition relied upon teleoperation (joystick-style
control) by human controllers (Eyler-Walker,

p.c.). Though ultimately supervisory control of
teams of semi-autonomous robots is a very
promising avenue for future research in robot
search and rescue, this technological approach
does not yet reach the level of competence of
teleoperation. Recently, NASA has been con-
cerned with human-machine interaction are
commanded by high-level commands rather than
sequences of low level commands. A grape-
fruit-sized Personal Satellite Assistant (PSA) is
being developed to operate aboard the Space
Shuttle's flight deck. It will navigate using its
own navigation sensors, wireless network con-
nections, and propulsion components. Rayner et
al. (2000a, 2000b) describe an architecture for a
spoken interface with the PSA.

An alternative approach to human-robot interac-
tion by Fong et al (2001) bridges teleoperation
with "collaborative control". In this model, hu-
mans and robots act as peers exchanging infor-
mation in dialogue to achieve goals. Instead of
controlling the vehicular robot solely by direct
(manual) control, the human specifies a set of
waypoints that the robot can achieve on its own.
One problem observed with waypoint driving is
that robots may encounter obstacles for which its
vision system is inadequate to assess. In such a
circumstance, the robot can query the human
about the nature of the obstacle and receive as-
sistance.

In this paper we describe a dialogue architecture
we are developing for a Personal Digital Assis-
tant (PDA)-based dialogue interface to a robot,
which we plan to extend toward a team-based
search and rescue task. Currently, the PDA sup-
ports single user, single robot dialogue in a lim-
ited navigation and question-answer scenario for
visitors to a technology trade show. Using touch
gestures and speech, users may ask the robot to
guide them to a particular booth, show images
from remotely located robots, and answer ques-
tions about exhibits at the trade show.

Our primary research interest is the development
of a dialogue system architecture robust enough
to tolerate continuous operational use, flexible
enough for porting to different domains and
tasks, and able to support multiple, simultaneous
conversations involving one or more humans
and one or more cooperative robot entities. The
dialogue management architecture we are devel-
oping is based on the TRINDIKit (Task oRi-
ented Instructional Dialogue Toolkit) (TRINDI
2002) framework, although we have introduced
a number of implementational changes in the re-
engineering of a TRINDIKit architecture.

1 Original Architecture
Our architecture was first assembled for devel-
opment of a demonstration system called Mia,
the MITRE Information Assistant. Mia is an in-
formation kiosk equipped with a touch screen
and a microphone, and stocked with information
about MITRE’s internal research projects for use
as a visitors’ guide to a MITRE trade show.

Mia was built as a set of independent modules
that communicated using SRI's Open Agent Ar-
chitecture (OAA). The Graphical User Interface
(GUI) was written in Tcl/Tk. The GUI handled
push-to-talk for the speech recognizer, main-
tained a text menu of possible user utterances,
showed a map of the overall trade show layout
with the ability to zoom in on specific rooms,
and displayed prerecorded output videos of the
animated agent speaking and gesturing. Dia-
logue management was done with the TRIN-
DIKit system.

TRINDIKit itself provides the basic infrastruc-
ture of a dialogue manager. It provides struc-
tured data types and the means to define an In-
formation State (IS) from those types, a lan-
guage for defining the modules of a Dialogue
Move Engine (DME), and a language for con-
trolling the application of individual modules to
the job of dialogue management. With all
TRINDIKit provides, it does not implement a
theory of dialogue. For that we used the GoDiS
(Gothenburg Dialogue System) (Larsson et al
2000) system, which implements the Questions
Under Discussion model in TRINDIKit. We
were able to adapt existing GoDiS dialogues to
our kiosk domain in a very short time.

In order to integrate TRINDIKit into the kiosk
using the OAA, we used TRINDIKit’s concur-
rent mode, which incorporates support for use of
the OAA. While this seemed to be a natural
choice, and allowed more natural definition of
module interactions, it also raised several prob-
lems, as discussed below.

1.1 Speed
TRINDIKit in concurrent mode ran very slowly,
on a 750 MHz Pentium2 with 384 MB RAM
running WindowsNT and no other processes.
We believe using the OAA for data transport
caused the delays, as a large number of mes-
sages were exchanged. Lewin et al (2000:45)
report that running GoDiS with TRINDIKit on
the OAA yielded a 2-second user utterance to
system utterance time, compared to a 0.5 second
time when using TRINDIKit’s internal agent
environment (which is not available for use with
non-prolog components). Although modules
run independently in concurrent mode, updates
to IS were still transmitted to each module indi-
vidually. Updates were sent whether they were
used by that module or not, and all other proc-
essing waited until that module finished its
work.

1.2 Data Consistency
TRINDIKit does not exercise good controls over
asynchronous modifications to IS. At one point
we had to build artificial delays into our system
to work around these limitations. The dialogue
manager we built for Mia was based on GoDiS,
which requires very structured turn-taking. In
several cases, however, the interactions with the
user flowed better if these responses were auto-
matic. Processing was sufficiently slow that our
GUI’s automatic acknowledgement often arrived
and was processed before TRINDIKit was fin-
ished cleaning up from the previous utterance.
As a result, it was possible to change the IS
twice before the DME could respond to one
change, and the system lost track of the dialogue
state. Consistency of data needs to be assured
throughout the design of the system.

1.3 Inconsistent Semantics
We encountered situations where constructs of
the GoDiS plan language were interpreted dif-
ferently depending on the depth of the plan.
With the proliferation of small languages im-

plemented by different sets of macros, it was
difficult to track down bugs in the rules and
conversation scripts. This was made more diffi-
cult by the nature of Prolog. Clauses that fail do
not normally generate any error messages, be-
cause failure is a normal aspect of program exe-
cution. Unfortunately, database bugs and mis-
spelled names often caused unexpected failures,
causing the system to generate either no re-
sponse or a response that looked reasonable but
was in fact incorrect. We feel it’s necessary to
provide explicit notification of certain kinds of
failure, such as failure to find a named variable,
failure to find a matching value in a table, and so
on.

1.4 Lack of Multimodal Support
Neither TRINDIKit nor GoDiS provides any
direct support for multimodal processing. The
primary interface driving the development of
these systems was language; there is no separa-
tion of events by source, no temporal tagging of
input events, and no provision for assessing
temporal relationships between different inputs.

2 Revised Architecture
We are moving ahead with the design for a dia-
logue manager for robot control. From our expe-
rience with the dialogue manager in Mia, we’re
convinced of the advantages of a kit-based ap-
proach. We feel that TRINDIKit was a good first
cut at it, and hope that our efforts will lead to a
second, somewhat better iteration.

2.1 Distributed Information State
We’ve chosen to model all of our module inter-
actions as if they were asynchronous. This pro-
vides the cleanest separation of modules, and the
cleanest conceptual integration with the asyn-
chronous requirements of robot control. Our ap-
proach to solving this problem is to define an
explicit interface definition language, which will
be used to define every module’s interface with
the outside world. We explicitly include the in-
formation state structure in this interface defini-
tion, perhaps as a module in itself. Since TRIN-
DIKit does not include a separate language for
specifying module interfaces, we are designing
our own. This language is analogous to CORBA
Interface Definition Language, but with less
concern for the physical implementation.

There are a large number of protocols and infra-
structures that have been developed to support
communications between agents, each with
characteristics optimized for particular tasks or
emphasizing desired functionality. We intend to
support small standard set of operations that
have wide applicability across programming
languages and communication protocols.

2.2 Controlled Extensibility
Our interface specifications will need to be
translated into specific computer languages be-
fore they can be executed. The translation will
vary depending on the underlying protocol used
to communicate between modules. While we
want to support the widest possible audience, we
don’t want to get bogged down in the construc-
tion of translators for every possible set of im-
plementation language and protocol. Our ap-
proach is to exploit an existing standard set of
translation software, namely XML and XSLT
processors such as Xalan. We are specifying a
dialect of XML for modules interface defini-
tions, and a small set of templates for realizing
interfaces with specific combinations of pro-
gramming language and protocol. Additional
templates can be written as necessary to extend
the kit to other languages and protocols without
requiring modification of the kit itself.

The same approach extends to the specifications
of DME rules, module synchronization and con-
trol, and the definition of new “languages” for
the kit. We have defined what well-formed for-
mulas look like in our kit’s scripting language:
what names look like, the types of expressions
that are possible, how expressions and state-
ments are aggregated to form programs. What is
left unspecified is the exact sequences of expres-
sions that form statements in any particular
script language. Those are specified using tem-
plates analogous to XML DTDs, which gives us
the flexibility to define new constructs as
needed.

2.3 Rule Engine
The DME rules in TRINDIKit have strong
similarities to rules in expert systems. We plan
to implement these rules in both a sequential
form, equivalent to the current TRINDIKit, and
in an expert system form which may be more
efficient. We expect that there will be differ-
ences in operating characteristics between those

two styles, and we want to identify and quantify
those differences.

One issue we must address in our design is uni-
fication. While logic variables are natural for
modeling discourse given the history of the
field, most languages typically used to imple-
ment robot software do not support it directly.
Our kit must ensure that sound unification pro-
cedures are provided for every language it sup-
ports, so that semantics are common across all
realizations of a script. We must also provide for
backtracking or iteration through the set of alter-
natives in a straightforward way.

2.4 Control and Synchronization
Our primary focus is multimodal communica-
tion, potentially multiparty as well. We are ex-
tending TRINDIKit’s triggers to include support
for consideration of temporal relationships be-
tween events, both within and across modes.

2.5 Integrated Environment
An ideal toolkit would have an integrated set of
tools for designing, testing, and debugging dia-
logues. We would like to support static and dy-
namic analysis of dialogues, recording and play-
back of dialogues, graphical dialogue design
tools, a “validation suite” of tests to support ex-
tension of the toolkit to new programming lan-
guages and agent protocols, and above all, the
ability to plug-in as-yet-undefined capabilities.

3 Future Work
Significant effort has been devoted to defining
our mutable language capability. This capability
provides both a reasonable transition path from
TRINDIKit scripts and a means for specifying
module interfaces and information state structure
using a common XML representation.

Our intent is to provide support for several dif-
ferent transport mechanisms to explore the
limitations of our approach. To date, we have
completed an initial interface definition specifi-
cation and have developed templates to realize
those interfaces with the OAA. DARPA's Gal-
axy Communicator is the second transport
mechanism we will be considering. Time and
resources permitting, we will examine some ad-
ditional transports with differing characteristics,
such as CORBA, Java Remote Method Invoca-
tion (RMI), or Linda.

We have devoted considerable time to up-front
consideration of scripting languages, portable
code generation, and module communications,
and are now beginning the task of implementing
our versions of the TRINDIKit scripting lan-
guages. Our target realization for these scripts is
a combination of Java code and expert systems
that can be executed within a Java program.

We plan to port and formally evaluate our dia-
logue toolkit within three domains (question-
answering, automated tutoring, and multimodal
robot control). Our dialogue toolkit will be
openly available, as well as sample implementa-
tions for each of these domains.

Conclusion
We have described our evolving architecture
(based on the TRINDIKit framework) for a
flexible dialogue system capable of robust, mul-
timodal, multiparty control of robots.

References
Fong T., C. Thorpe, and C. Baur (2002), Robot as

Partner: Vehicle Teleoperation with Collaborative
Control, Workshop on Multi-Robot Systems NRL,
Washington, D.C.

Kahney, Leander (2001) Robots Scour WTC Wreck-
a g e . Wired Magazine, http://www.wired.
com/news/print/0,1294,46930,00.html

Larsson, Staffan, Robin Cooper, Stina Ericsson
(2000) System Description of GoDis. Third Work-
shop in Human-Computer Conversation, Bellagio,
Italy.

Lewin, I., Rupp, C., Hieronymus, J., Milward, D,
Larsson S., and Berman, A. (2000) ‘SIRIDUS
Project Deliverable D6.1, System Architecture and
Interface Report (Baseline), URL (May 2002):
http://www.ling.gu.se/projekt/siridus/Publications/
publications.html.

NASA (1997) Past Missions – Mars Pathfinder.
NASA, http://www.jpl.nasa.gov/missions/past/
marspathfinder.html

Rayner, M., B.A. Hockey, and F. James. (2000a)
Turning Speech into Scripts. AAAI Spring Sympo-
sium on Natural Dialogues with Practical Robotic
Devices.

Rayner, M., B.A. Hockey, and F. James (2000b) A
compact architecture for dialogue management
based on scripts and meta-outputs. ANLP.

TRINDI (2002) . http://www.ling.gu.se/projekt/trindi.

