
The Role of Speech in a Distributed Simulation:
The STOW-97 CommandTalk System*

Alan J. Goldschen, Lisa D. Harper, E. Richard Anthony
The MITRE Corporation

1820 Dolley Madison Blvd.
McLean, VA 22102

{alang, lisah, ranthony}@mitre.org

* This work is supported by SSC (formerly NRaD) for STOW.

1. Abstract

We describe the role of CommandTalk during
the 1997 Synthetic Theater of War (STOW-97)
interoperability exercise. We present issues
relating to the use of the speech recognition and
synthesis components, and to the observed user
error-feedback during this exercise. The
purpose of CommandTalk for STOW-97 was to
provide a spoken language interface to the
ModSAF simulation. CommandTalk allows
exercise participants to interact with synthetic
entities using the same commands appropriate
for directing human forces. This ability enables
military personnel from the Air Force, Army,
Marine Corps, and Navy to interact directly with
the simulation without first learning specific
skills for operating the simulation system.
Thus, CommandTalk allows exercise
participants to concentrate on the priorities and
goals of the exercise.

CommandTalk translates spoken utterances
from human exercise participants into
Command and Control Simulation Interface
Language (CCSIL) commands for synthetic
entities to process. Likewise, synthetic entities
send CCSIL messages to other synthetic entities
and to human participants, which
CommandTalk translates into appropriate
natural language statements. We first describe
CCSIL and CommandTalk, and then focus on
the role, usage, and error feedback mechanisms
of the CommandTalk system during the STOW-
97 exercise. Finally, we propose future
directions for CommandTalk in distributed
interoperability simulations.

Keywords: speech recognition, speech
synthesis, HCI, simulation, STOW,
CommandTalk, distributed, CCSIL, dialogue

management, error-feedback, multi-modal
interface

2. Introduction

CommandTalk is a bi-directional spoken
language human computer interface that allows
natural language communication between
humans and synthetic entities. In the STOW-97
distributed interoperability simulation exercise,
these entities are part of the Modular Semi-
Automated Forces (ModSAF or SAF)
simulation. The SAF simulation system uses the
Command and Control Simulation Interface
Language (CCSIL) for entities to communicate
with one another (MITRE 1996). CCSIL
defines structured, formatted command and
control messages for each of the four armed
services (Air Force, Army, Navy, and Marine
Corps). CommandTalk (Moore et al. 1996, Bratt
et al. 1996) consists of state-of-the-art spoken
language technology (speech recognition, speech
synthesis, and natural language understanding)
designed specifically for commanders and
exercise participants to interface with synthetic
entities.

Figure 1 depicts the overall system in which a
commander interacts with a SAF simulation
using the CommandTalk speech interface and
the SAF’s graphical user interface (GUI). The
CommandTalk speech interface includes both
recognition and synthesis components that use
service-specific spoken language grammars.
Commands that originate from GUI interactions
affect entities only within a particular SAF,
while commands that originate from the
CommandTalk spoken language interface affect
entities across all SAF simulations. This
interoperability capability occurs because
CommandTalk translates spoken language
commands into CCSIL messages (Goldschen

1997). CommandTalk bi-directionally
translates spoken language messages into
CCSIL messages and translates CCSIL
messages into spoken service-specific (natural
language) statements heard with a speech
synthesizer.

SAF
Simulation

SPEECH INPUT WAVEFORM

GRAPHICAL USER INTERFACE

L O S

CommandTalk

SynthesizerSYNTHESIZED SPEECH

SAF
Simulation

CCSIL

PO,
CCSIL

TEXT STRING

PO, ICL,
CCSIL

Figure 1 Commander, CommandTalk, and
Multiple SAFs

2.1 CCSIL

The Command and Control Simulation Interface
Language (CCSIL) facilitates interoperability
between and among entities in a simulation
exercise (MITRE 1996). CCSIL allows for
synthetic entities to exchange command and
control information, such as orders, directives,
status reports, and intelligence reports (MITRE
1996). CCSIL messages contain a specific
message type and message header. CCSIL
supports ground, sea, air, and tactical
operations. A ground operation, for example,
might require that a platoon move to particular
location. The CCSIL message header contains
sender, receiver, and radio number fields. The
sender field contains the name of entity sending
the CCSIL message. The receiver field contains
the name of the entity (or names of the entities)
that the CCSIL message is intended for. The
radio number field corresponds to the radio
frequency selected by the sender. All virtual and
human entities tuned to a particular frequency
receive all CCSIL messages transmitted on that
frequency.

2.2 CommandTalk

CommandTalk was initially conceived as a
training tool for the Marine Corps Leathernet
program (Moore et al. 1996, Bratt et al. 1996).
CommandTalk provides the STOW-97 exercise
with spoken language human computer interface
technology for human commanders to interact
with entities in SAF simulations. CommandTalk
uses grammars developed for each of the four

military services. These grammars allow two
types of spoken language input. The first type of
spoken language input is for exercise (or
scenario) manipulation. An example of this
kind of command is ‘Create an M1A1 company
at 950 960 facing northeast’. The second type
of spoken input is for issuing command and
control orders such as ‘First platoon assault and
secure objective alpha’. The commander
always has the option to issue commands with
the SAF GUI. CommandTalk, however,
eliminates the need for commanders to learn
how to issue complex exercise objectives from
the SAF GUI.

CommandTalk incorporates into a SAF
simulation an Open Agent Architecture (OAA)
and speech-related technologies (Cohen et al.
1994, Dowding et al. 1993, Dowding et al.
1994). The Open Agent Architecture provides
the infrastructure for distributed processes
(agents) to communicate. These agents
coordinate, interact, and plan using the
Interagent Communication Language (ICL), a
Prolog-style language (Dowding 1996).
CommandTalk agents translate spoken
commands directly into SAF simulation
commands. The speech input display provides
error feedback relating to the spoken language
input. This display indicates whether the speech
recognizer is ready or busy, a command
translates properly, and provides the text of the
spoken utterance.

Figure 2 depicts CommandTalk agent
interaction after the issuance of a platoon halt by
the commander. This figure shows that
commands directed towards a SAF simulation,
e.g. Marine Corps SAF (MCSAF) entity,
originate either from the SAF GUI or from the
CommandTalk ModSAF agent.

 OPEN
 AGENT
ARCHITECTURE
(BLACKBOARD)

MODSAF
 AGENTMCSAF

SPEECH

PO
GUI

LOS

SPEECH
RECOGNITION

AGENT

NATURAL
LANGUAGE

AGENT

PUSH TO
TALK

AGENT

100A1
HALT

MODSAF(HALT(1,3,45])]

CONTEXT
INTERPRETER

AGENT

Figure 2 Commander halting a platoon in
CommandTalk

CommandTalk spoken language input requires a
push-to-talk button and microphone not shown

in Figure 2. The speech recognition system
(Nuance 1996) processes the spoken language
input into a text string for the Gemini natural
language (NL) parser (Dowding et al. 1993).
Next, the NL parser produces a semantic logical
form for the Context Interpreter (CI). The CI
resolves under-specified information such as
pronouns and speaker reference.

Figure 2 illustrates the following example.
After the speaker pushes the microphone and
utters the statement ‘100A1 Halt’, the Speech
Recognition (SR) Agent recognizes the statement
and places the text string ‘100A1 Halt’ on the
blackboard. The Natural Language Agent
accepts this message and places a context-
independent structured interpretation on the
blackboard corresponding to the SR Agent text
string input. The purpose of the NL agent is to
perform natural language parsing and semantic
interpretation of the recognized word string
(Dowding et al. 1993, Dowding et al. 1994).
The Context Interpretation Agent picks up this
message and places on the blackboard one or
more MCSAF-specific ICL statements
corresponding to the context-independent
structured interpretation.1 The Natural
Language and Context Interpretation Agents
ensure, in this example, that platoon 100A1 is
currently performing an MCSAF-specific task.
The Context Interpretation Agent specifically
places on the blackboard the MCSAF statement
‘ModSAF(Halt([1,3,47]))’. Persistent object
(PO) protocol provides the mapping of the name
‘100A1’ to the persistent object, in this case,
‘[1,3,47]’. Finally, the ModSAF Agent updates
the MCSAF simulation from this MCSAF
statement. If platoon 100A1 does not exist in
the simulation, the speech interface displays a
message (relayed from the context interpreter)
that 'unit 100A1 does not exist in the
simulation’, and CommandTalk does not send
the command to the SAF simulation.

1 The key difference between the functionality of
the Natural Language Agent and the Context
Interpretation Agent is that “the structured
interpretation [from the NL Agent] encodes
only information directly expressed in the word
string (or utterance), while the Context
Interpretation Agent applies contextual
information to produce a complete
interpretation” (Moore et al. 1996).

2.3 CommandTalk and STOW-97

Rather than customizing a specific ModSAF
Agent for each SAF simulation in STOW-97,
CommandTalk provides two additional agents to
support human and entity communications (see
Figure 3). Goldschen (1997) defines the CCSIL
Agent (CA) as a process that translates
externally generated messages into CCSIL
formatted messages which may be sent to
entities in any SAF simulation participating in
the interoperability exercise. These external
messages originate from the speech-input
component of the CommandTalk interface. A
second process, the CCSIL-TO-ENGLISH
(C2E) Agent translates CCSIL messages
generated by synthetic entities into service-
specific (natural language) statements for the
speech synthesizer.

MCSAF

SPEECH INPUT STRING

PO
GUI

CCSIL

LOS

AIRSAF

CCSIL

CCSIL

CCSIL

CCSIL

SPEECH OUTPUT STRING

CCSIL

CommandTalk
System

SYNTHESIZER

CCSIL
Agent

CCSIL To
English
Agent

SYNTHESIZED
SPEECH

SPEECH INTERFACE DISPLAY

Figure 3 STOW-97 CommandTalk System

Figure 3 illustrates a commander using both the
ModSAF GUI and CommandTalk to interface
with entities in the MCSAF. Synthetic entities
within the MCSAF generate CCSIL messages to
interact with entities in distributed SAF
simulations. Thus, CommandTalk provides, by
using CCSIL messages, a means for humans to
interact with entities in distributed SAFs.

2.3.1 Commander to Entity Communication

The ability for a commander to send command
and control messages to other entities in a
distributed interpretability simulation exercise
defines the role of the CCSIL Agent (CA)
(Goldschen 1997). The CA translates utterances
from a commander into CCSIL messages that
are sent to entities in different SAF simulations.
As Figure 3 depicts, the CA attaches to (or
represents) a human commander interfacing
with MCSAF in an interoperability exercise.

The CA translates only command and control
messages into CCSIL. The ModSAF Agent
processes non-command and control messages
that affect entities only in the MCSAF. With
the CA, for example, a Marine commander in
MCSAF can request entities in the Air Force
SAF to provide fire support using the CCSIL
Fire Support message (MITRE 1996). Before
sending a CCSIL message, the CA determines
the common radio number (frequency) shared by
sender and receiver. Since the CA, in this
example, attaches to an entity in MCSAF,
messages which the CA sends use the CCSIL
software components of MCSAF. All entities
tuned to a given frequency and within the
distributed interoperability simulation exercise
receive the CCSIL message. Entities listed in the
receiver field of the CCSIL message respond as
appropriate (based on their internal SAF-
specific algorithms).

2.3.2 Entity to Commander Communication

The ability for a commander to receive spoken
language messages from synthetic entities
defines the role of the CCSIL-To-English (C2E)
Agent. The C2E Agent translates CCSIL
messages from different SAF entities into
service-specific statements for the speech
synthesizer (Black et al. 1997) to process.
Speech synthesis allows entities of multiple
STOW-97 simulations to communicate on
specific radio frequencies. The CommandTalk
speech synthesis system selects different voices
for entities so that listeners may distinguish
among the multiple entities broadcasting on the
same frequency. A commander or exercise
participant may select one or multiple radio
frequencies to monitor or eavesdrop on CCSIL
message traffic. Eavesdroppers hear all message
traffic over a given radio frequency regardless of
whether a message originates from a synthetic
entity or a human. The text translation that the
C2E forms from a CCSIL message depends on
the military service (i.e., service-specific
grammar) of the sender.

2.3.3 CommandTalk System Feedback

Figure 3 illustrates that CommandTalk provides
three different system-to-commander feedback
mechanisms. Feedback originates from the
CommandTalk speech interface display, from
the SAF GUI, and from synthesized CCSIL
messages.

First, the speech interface display provides user
feedback that indicates the success or failure of
spoken language input. An utterance, although
considered valid by the speech recognition
grammar, may not be valid for the current
simulation state. For example, the speech
recognizer may recognize the name of a unit in
an utterance and consider the utterance valid.
However, if the unit does not exist in the current
simulation, the context interpreter rejects this
utterance.

To provide the user feedback about the validity
of a statement, the speech interface display uses
both visual (color) and audio (sound)
information. For example, this interface
displays yellow when initializing, green when
ready, and red when an error occurs. The
speech interface displays, if possible, the reason
for the error. CommandTalk provides audio
cues such as a short beep when a spoken
utterance is successfully translated and a short
ding when an error occurs.

Second, the SAF GUI provides visual feedback
in response to a spoken command. For example,
if the commander says ‘Zoom in on Boomer
one’, the SAF zooms in and centers on unit
Boomer1. If unit Boomer1 does not exist, the
speech interface displays an error message, and
no message is sent to the SAF.

Third, synthetic entities provide spoken
language feedback in response to commands
from other entities and the human controller.
When an air controller says, ‘Lancer zero one,
vector two seven zero,’ CommandTalk
translates and synthesizes Lancer01’s response
as ‘Roger. Vector two seven zero.’ Spoken
language feedback indicates to the controller
that the entity has received and understood the
command.

3. STOW-97

STOW-97 consists of prototype high fidelity
computer simulation software training tools. By
providing the ability to quickly create, execute,
and assess realistic joint training exercises,
STOW-97 helps to support Joint Task Force
missions. STOW-97 fosters CommandTalk as
an advanced technology that provides exercise
participants with a more familiar, realistic

interface and reduces the number of training
support personnel. Prototype computer
simulation training exercises, typically, require
operators to use an unfamiliar computer
interface and additional support personnel to
manipulate the exercise. This violates a
standing goal to ‘train as you fight’.

The purpose of CommandTalk for the STOW-97
exercise is to provide a realistic and familiar
spoken language interface to SAF simulations
for exercise participants. CommandTalk allows
these participants to interact with synthetic
entities using the same commands as for
directing human forces. Military personnel
from the Air Force, Army, Marine Corps, and
Navy interact directly with the simulation
without learning specific skills for operating the
simulation system. Thus, CommandTalk
enables the participants to concentrate on the
priorities and goals of the exercise.

CommandTalk was successful in its uses during
STOW-97 for the Air Force, Army, and Marine
Corps exercise participants. Navy participants
did not use CommandTalk.

3.1 Training Audience

Military personnel from the four services, Air
Force, Army, Marine Corps, and Navy
composed the training audience for the STOW-
97 exercise. For the Army and Marine Corps,
the CommandTalk grammar supports company
and platoon commanders of mechanized
platforms. This grammar allows commanders to
move units, change speed, modify formations,
and assault enemy locations. The Army
grammar also includes a number of engineering
support functions. The Navy grammar allows
commanders to steer ships, change courses, set
movement speeds, and fire missiles. Finally, the
CommandTalk grammar supports Navy and Air
Force Weapons Controllers (AWC). AWC’s are
members of an air combat crew and assist in air
combat missions as ground-based ‘eyes and
ears’ of the team. Controllers assist the fighters
by directing them to targets and relaying
information, such as, air contacts, air base
status, and observed tactics. The CommandTalk
AWC grammar comprises a subset of real-world
Weapons Controller language, and the C2E
Agent synthesizes a subset of Air Force and
Navy combat pilot language.

CommandTalk supports scenario management,
such as creation of synthetic forces, placement
of control measures, and SAF display
manipulations (e.g. panning and zooming).
During STOW-97 support personnel used
CommandTalk to quickly create scenarios and
to manipulate the SAF GUI.

3.1.1 Scenario Examples

The CommandTalk grammar development uses
military verbal and radio communication from
real military scenarios. We specifically
incorporated realistic scenarios to identify the
STOW-97 Navy and Air Force language
requirements for Defensive Counter Air (DCA)
and Close Air Support (CAS) missions. DCA
missions typically require more monitoring and
intervention than CAS missions.

3.1.1.1 Defensive Counter Air

DCA missions require coordinated activities
between controllers and air crew. The DCA
scenario (Harper et al. 1997) defines language
requirements for similar and dissimilar air
tactics to counter active air threats such as other
fighters or ballistic missiles. These missions use
air or surface-based radar controllers to monitor
threats with operational radar and intelligence
information. During STOW-97, controllers
used CommandTalk spoken language
technology to provide synthetic aircraft entities
with tactical air information such as bearing,
range, and altitude about targets. Controllers
spoke to these entities with detailed advisory
information about threats in the rapidly
changing environment and in response to
synthetic entity requests.

The DCA scenario provides a basis for
understanding the operational use of common
brevity terms and for identifying the air message
structure. The air grammar, constrained by
CCSIL message limitations, did not fully mirror
the real-world human controller and human
pilot communications. Statements CCSIL did
not support were removed from the DCA
scenario. These items include certain types of
pilot readbacks, ambiguous receiver, and target
location by reference off another target.

3.1.1.2 Close Air Support

CAS missions described by (Jackson et al.
1996) and mapped into CCSIL (Goldschen et al.
1996) contain the language requirements to
support realistic CAS scenarios. These missions
consist of air actions using fixed and rotary-
wing aircraft against hostile targets in close
proximity to friendly forces. These scenarios
require detailed communications among
controllers, pilots, and ground forces.

Although the CommandTalk language supports
CAS missions, the STOW-97 exercise did not
use these missions with CommandTalk. Two
qualified military controllers were on position at
all times and did not need to intervene nor take
direct control of pre-planned CAS missions.

3.2 Lessons Learned

STOW-97 provides an opportunity to critically
observe CommandTalk and examine its key
technical and operational strengths.

3.2.1 Spoken Language Input

The following operational and technical lessons
relate to the speech recognition portions of
CommandTalk.

• Speech is a natural, realistic, and effective
means for enabling new users with adequate
domain knowledge to interact with the
simulation system.

• The find speech command provides a faster
method to locate entities and points than the
SAF GUI.

• The speech recognizer performs well with a
noise canceling microphone. Background
noise during STOW-97 did not seriously
degrade the recognition accuracy.

• The push-to-talk button is an awkward
interface, especially for the AWCs since
they sometimes use both hands to operate
the simulation system.

The following lessons relate to the spoken
language grammars used for the STOW-97
exercise.

• Written checklists that list commands by
desired action are helpful to the unassisted
commanders and controllers. Checklists
and positional guides are familiar to

military personnel since operator
workstations require them.

• Use of service-specific grammars allow
exercise participants to speak naturally into
the CommandTalk interface.

• CommandTalk, during STOW-97, did not
have the capability to dynamically add new
elements (entity names, points) to the
speech recognition grammar. Entities with
unexpected names could not be addressed
during the exercise. Software changes took
at least 24 hours, which is a disadvantage in
a rapidly changing exercise environment.

 3.2.2 Spoken Language Output

 The following lessons pertain to spoken
language output.

• In conjunction with speech recognition,

speech synthesis enables realistic human
computer interfaces.

• Multiple synthetic voices allow exercise
participants to distinguish different entities.

• Exercise participants find it useful to
simultaneously monitor multiple
frequencies.

• Entities responses were difficult to hear
through audio speakers. Instead, these
responses should be heard through operator
headsets to reduce the noise level in the
operations room.

• Some messages from the speech synthesizer
were too slow to keep pace with the action.

• Speech from the synthesizer sounds too
machine-like and is sometimes difficult to
understand.

• CommandTalk did not synthesize all
CCSIL properly. The C2E Agent algorithm
limits how certain messages translate from
CCSIL into natural language statements.
Furthermore, exercise participants did not
always agree about the proper translation of
a CCSIL message to natural language
statements.

• It is confusing for commanders to hear their
own synthesized messages.

 3.2.3 CCSIL

 These issues relate to CCSIL’s role as the
communication mechanism between the CCSIL
Agent, C2E Agent, and SAF.

• CCSIL communication allows for the
command and control of entities in different
SAF simulations.

• To increase the speed and number of
simulation entities per machine, CCSIL
support was removed from AirSF
simulation for the STOW-97 exercise. This
modified SAF is AirSF-lite. However,
CommandTalk and the CCSIL Agent could
not communicate with entities in AirSF-lite.
As a solution, the CCSIL Agent connected
to a non-participating exercise entity on an
AirSF-full station. This connection allowed
AWCs to control any entity in the exercise.

• CCSIL message types and structure
definitions limit the usage of the language.
For example, an air controller may say
‘push it up’ to request an aircraft to increase
speed during an intercept. There are no
corresponding CCSIL messages for this
message. Any speed changes must,
therefore, use vector messages, which
contain a mandatory field for direction (e.g.,
vector west).

3.2.4 Feedback Mechanisms

We describe a post-hoc analysis of user error-
feedback during the STOW-97 exercise.
Messages from CommandTalk to the SAF are
either for scenario manipulation (GUI-related)
interactions or commands to synthetic entities.
This section focuses on commands sent between
humans and cooperating synthetic entities.
CommandTalk agents communicate information
about speech input using the speech interface
GUI. If a message passes successfully through
the speech input system, synthetic entities
respond upon receiving a valid message.

Since commanders during STOW-97 spoke to
synthetic entities with the same language as they
would to human counterparts, these
commanders expected natural, predictable
interactions with synthetic entities. These
interactions, however, were not natural because
there was no familiar means for resolving
potential mis-communications.

We describe some error feedback mechanisms to
support natural interaction between human and
synthetic entities. We present these mechanisms
by level of linguistic error, and we reference
specific CommandTalk and SAF simulation

components for resolving the error. The
CommandTalk OAA consists of agents that
accept and process messages, and submit new
messages for other agents to process. Each
CommandTalk agent examines a message to
process information at a specific linguistic level.
The Speech Recognition Agent converts speech
signals into a string of words. The Natural
Language Agent verifies the syntactic and
semantic structure of this word string. The
Context Interpreter Agent examines this new
structure in the context of larger chunks of
information. For each level of linguistic
analysis, a specific CommandTalk agent
processes the message and identifies potential
errors.

Table 1 provides an eight-level breakdown of
the types of errors from the use of
CommandTalk during STOW-97. This analysis
maps the type of error to a level of interpretation
failure from Duff et al, 1996. Levels of
interpretation failure correspond to levels of
error detection in the cognitive model described
by Clark et al., 1989. This model serves as a
useful means for analyzing system failures as
they pertain to communication failures between
human and synthetic entities. Table 1 lists the
type of linguistic communicative failure, the
CommandTalk agent most likely to resolve the
error at a given level, a functional description of
the error, and an example from STOW-97
CommandTalk. We summarize each entry of
Table 1 with an air weapons controller example
from the STOW-97 exercise.

Level 0: Synthetic entities did not respond upon
receiving a command that they determined
invalid. This lack of response caused confusion
for controllers trying to communicate with these
entities. As a consequence, these controllers
deviated from standard procedures (e.g., query
that the agent received and understood the
spoken message). Controllers would repeat the
same command several times, and then give up
communicating with the agent until a later time.

Level 1: Using the speech interface display,
controllers recovered easily from speech
recognition errors such as noisy, broken, or
garbled transmissions.

Level 2: Controllers watched the speech
interface display for possible recognition errors.
This interface displayed the string 'invalid
command' for commands not structurally valid.
This type of feedback allows controllers to
repeat the command.

Level 3: Controllers sometimes unknowingly
stated an ill-formed command causing mis-
recognition. In these cases, controllers did not
know what was wrong with the spoken message
since display feedback was insufficient. For
example, the speech interface did not indicate
parts of the message structurally or semantically
ill-formed.

Level 4: CommandTalk correctly parsed and
sent commands to synthetic entities, which did
not always exhibit correct behavior. Often,
synthetic entities did not execute a given
command since that command required the
entity to exceed model domain constraints.
These entities partially executed commands
without informing the controller that the exact
command was not executed. For example, a
fighter entity receiving a message to exceed its
valid speed parameters, responds by moving at
the highest speed possible -- not at the requested
speed. This entity does not inform the controller
that it is not completely obeying the command.

Level 5: Controllers did not receive feedback
about potentially conflicting commands.
Conflicting commands can cause unpredictable
behavior. For example, when an air controller
says “left 270” and the shortest turn to 270 is
right, the synthetic entity accepts the heading
and ignores the direction. The entity assumes
that the controller meant to say “right 270”. The
controller, however, might mean to say “take
the long way around to 270 and turn right”, a
perfectly valid command. The entity should
either question the turn direction or obey the
complete command.

Level 6: Controllers did not receive feedback for
perfectly valid commands that entities could not
execute. This situation typically arose when the
software behaviors for the command did not
exist in the SAF simulation (the behavior had
not yet been implemented). The controller did
not have the proper feedback to know why a
command was not executed.

Level 7: Since it is possible that an unintended
message can successfully pass through the
speech input system, controllers monitored text
strings in the speech interface display. This
capability allowed controllers to re-state the
intended message to the receiving entity.

Level Linguistic Level CT
component

Error Description Examples in CommandTalk

Level 0 Discourse (DM) bi-
directional
monitor

No speech received following
prompt to user

Synthetic entity: "Say again Line 9?"
No response

Human air controller: "What State?"
No response.

Respondent error.
Level 1 Acoustics SR SR has no hypothesis for

current acoustic input
Unrecognized or garbled input (e.g., broken
transmission, user abort, stutter)

SR or human error.
Level 2 Syntax NL Invalid syntactic structure Human air controller recognized as: "Contact

two knight four zero"

…actually said “contact two nine zero”

SR error. Due to mis-recognition this was
determined an invalid command.

Level 3 Sentential
Semantics

NL/CI Semantic type conflict: ill-
formed CCSIL command

Human air controller said: "Climb angels"

Human error. Missing mandatory argument.
Should have been "Climb angels altitude"

Level 4 Domain KB Agent domain
model

Violation of static Domain
Model

Human air controller said: "Set speed mach 2
point oh"

Human error. This is an impossible speed.

Level 5 Contextual
Felicity

Agent state Infelicitous in current
discourse context

Human air controller said: "left 270"

Human error. Statement should have been "right
270"

Level 6 Pragmatics Agent behavior
rule-base

Pragmatics Human air controller: "RTB in five minutes"

No rule exists in agent behaviors to interpret this
command.

Level 7 Speaker
Detection

User Error not detected above Human said, “Ice 25 RTB”
Recognized as “Ice 29 RTB”

SR error. Valid system input. Error caught by
the speaker.

Table 1: Eight Categories of Miscommunication

4. Future Directions

Due to the experience gained from the STOW-
97 exercise, we identify the following items to
enhance and complement capabilities of
CommandTalk.

4.1 Spoken Language Input

CommandTalk should provide an automatic
mechanism to add specific entity names into the
spoken language grammar. Commanders
should be allowed to address by name anything
within the simulation. This technology exists
and would remove the requirement that names
be known in advance of an exercise.

4.2 Spoken Language Output

We recommend that CommandTalk use the
following features for spoken language output.
First, we should add “radio realism” into the
simulation. Anthony et al. (1997) describes the
integration of a spoken language interface that
uses a SINGCARS radio model. This provides a
means of adding realistic noise into the signal.
Second, the system should provide the capability
to dynamically select a synthesis grammar. For
example, Air Force pilots are accustomed to
hearing a message phrased as ‘bogey two-seven-
zero fifteen’ for contact reports, while Navy
pilots prefer to hear ‘bogey bears two-seven-
zero for fifteen miles’. Finally, CommandTalk
should offer the ability to control message
synthesis based on the dynamic situation state of
the simulation. The current system uses a one-
to-one mapping between CCSIL messages and
corresponding natural language statements. In
reality, message form and content differs greatly
depending on current situation state. For
example, during intercepts, controller and

aircraft transmissions at long range are more
detailed than at shorter ranges.

4.3 Error Feedback

Most of the errors between controllers and
synthetic entities during STOW-97 occurred
because humans had insufficient information
about the actions and intents of synthetic
entities. We recommend an approach that
minimizes these types of user error feedback.
This approach uses a cognitive model to
distinguish among levels of understanding in
human-human dialogue (Clark et al. 1989).

We suggest two general strategies to achieve
effective user error feedback in accordance with
the model. The first uses a centralized
Dialogue Manager that accesses all bi-
directional message traffic, domain knowledge,
and system state information. The Dialogue
Manager is responsible for diagnosing errors,
choosing and executing a repair strategy (Duff et
al. 1996). An alternative strategy expands the
current CommandTalk agents to account for the
types of errors (as Table 1illustrates). When
necessary, these agents should be able to query
and negotiate with other agents to resolve
specific errors.

5. Acknowledgment

We thank the DARPA STOW Project Manager
Cdr. Peggy Feldmann for her support of
CommandTalk.

6. References

Anthony, E., C. Bowen, M. Peet, and S.
Tammaro (1997), “Integrating a Radio
Model with a Spoken Language Interface for
Military Simulations,” Proceedings of the 5th

European Conference on Speech
Communication and Technology, Rhodes,
Greece, 22-25 September, 1997, pp. 1823-
1826.

Black, A., A. Taylor, R. Caley, (1997) “The
Festival Speech Synthesis System,” 1997,
available from
http://www.cstr.ed.ac.uk/projects/festival.htm
l

Bratt, H., J. Dowding, M. Gawron, Y. Gorfu,
and B. Moore (1996), “Technical Overview
of the CommandTalk System,” SRI
International Report, January 30, 1996.

Clark, H. and E. Schafer (1989), “Contributing
to Discourse,” Cognitive Science, volume 13,
pages 259-294, 1989.

Cohen, P., A. Cheyer, M. Wang, and S. Baeg
(1994), “An Open Agent Architecture,” in
AAAI Spring Symposium Series, Software
Agents, Sanford, California, pp. 1-8, 1994.

Dowding, J. J. Gawron, D. Appelt, J. Bear, L.
Cherney, R. Moore, and D. Moran (1993),
“Gemini: A Natural Language System for
Spoken-Language Understanding,” in
Proceedings of the 31st Annual Meeting of
the Association for Computational
Linguistics, Columbus, Ohio, pp. 54-61,
1993.

Dowding, J., R. Moore, F. Andry, and D. Moran
(1994), “Interleaving Syntax and Semantics
in an Efficient Bottom-Up Parse,” in
Proceedings of the 32nd Annual Meeting of
the Association for Computations
Linguistics, Las Cruces, New Mexico, pp.
110-116, 1994.

Dowding, J., (1996) “ModSAF Agent
Language,” SRI International Report,
September 8, 1996.

Duff, D., B. Gates, and S. Luperfoy (1996), “An
Architecture for Spoken Dialogue
Management,” ICSLP 96, vol. 2, available
from
http://www.asel.udel.edu/icslp/cdrom/vol2.ht
m.

Goldschen, A. and L. Harper, (1996) “Mapping
of Close Air Support Demo Commands into
CCSIL Agent Commands,” MITRE
Technical Report, in progress, Draft dated
October 14, 1996, (not in public domain).

Goldschen, A., (1997), “The Role of the CCSIL
Agent for Distributed Simulations,” 1997
Spring Simulation Interoperability
Workshop, Orlando, Florida, March 1997.

Harper, L. and A. Goldschen (1997), “Mapping
of Defensive Counter Air Commands into
CCSIL Commands, Draft MITRE Technical
Paper, (not in public domain).

Jackson, C. and C. Petersen (1996), “Command
and Control Simulation Interface Language:
Close Air Support Demonstration,” BMH
Draft Document Report, March 3, 1996,
http://www.bmh.com/bmh/CAS/CAS_article.
html.

The MITRE Corporation, (1996), Command
and Control Simulation Interface Language
(CCSIL), MITRE Informal Report, Modeling
and Simulation Technical Center, volumes-
VI, Release 3.0, October 7, 1996, (not in
public domain).

Moore, R., J. Dowding, H. Bratt, J. Gawron, Y.
Gorfu, and A. Cheyer (1996),
“CommandTalk: A Spoken Language
Interface for Battlefield Simulations,” SRI
International Report, May 30, 1996.

The Nuance Speech Recognition System (1996),
Version 5, Nuance Communications, Menlo
Park, CA, 1996.

7. Authors’ Biographies

Alan J. Goldschen was the Lead Engineer for
the CommandTalk STOW-97 effort. He is a
Lead Engineer in the MITRE Signal Processing
Center and holds a Ph.D. in Electrical
Engineering from George Washington
University.

Lisa D. Harper, a former Air Force air
weapons controller, is an AI Engineer for the
Washington Artificial Intelligence Center at The
MITRE Corporation. She holds an M.S. in
Theoretical Linguistics from Georgetown
University. She is currently a Ph.D. candidate
with particular interests in natural language
processing for dynamic 3D environments.

E. Richard Anthony was the STOW
CommandTalk project leader during the STOW-
97 ACTD. Currently, he is a Senior Signal
Processing Engineer with The MITRE

Corporation and holds a M.S. in Electrical
Engineering from Stanford University.

